CC's Boat

一顾青山舟远去,归来仍是顾青山

0%

代码随想录算法训练营第十四天|二叉树遍历

今天学习了如何使用递归法对二叉树进行前序、中序和后序遍历

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
// pre-order
class Solution {
public List<Integer> preorderTraversal(TreeNode root) {

List<Integer> ans = new LinkedList<>();
if(root != null) {
preorder(ans, root);
return ans;
}

return ans;

}

private void preorder ( List<Integer> ans, TreeNode next) {

// as this is pre-order scan
// no matter whether this node has children or not
// add its value in the ans first
TreeNode node = next;
ans.add(node.val);

// if there is no child, just return
if ( node.left == null && node.right == null) {
return;
// else let's call this method recursively on its children
}else{
if(node.left != null) {
preorder(ans, node.left);
}

if(node.right != null) {
preorder(ans, node.right);
}
}
}
}

// in-order
class Solution {
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> ans = new LinkedList<>();

if (root != null){
inorder(ans, root);
}

return ans;
}

private void inorder (List<Integer> ans, TreeNode next) {
TreeNode node = next;
if (node.left == null){
ans.add(node.val);

if (node.right != null) {
inorder(ans, node.right);
}else{
return;
}
}else{
inorder(ans, node.left);
ans.add(node.val);
if (node.right != null) {
inorder(ans, node.right);
}
}
}
}

// post-order
class Solution {
public List<Integer> postorderTraversal(TreeNode root) {
List<Integer> ans = new LinkedList<>();

if (root != null){
postorder(ans, root);
}

return ans;
}

private void postorder(List<Integer> ans, TreeNode next) {
TreeNode node = next;

if (node.left == null && node.right == null) {
ans.add(node.val);
return;
}else if (node.left != null && node.right != null){
postorder(ans, node.left);
postorder(ans, node.right);
ans.add(node.val);
}else {
if ( node.left != null) {
postorder(ans, node.left);
ans.add(node.val);
}

if ( node.right != null) {
postorder(ans, node.right);
ans.add(node.val);
}
}
}
}

/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/

一开始写的不够简洁,修改了一下递归出口,修改后:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/

// pre-order
class Solution {
public List<Integer> preorderTraversal(TreeNode root) {
List<Integer> ans = new LinkedList<>();
preorder(ans, root);
return ans;

}

private void preorder ( List<Integer> ans, TreeNode cur) {
// recursion exitrance condition
if ( cur == null) {
return;
}
// pre-order
ans.add(cur.val);
preorder(ans, cur.left);
preorder(ans, cur.right);
}
}

// in-order
class Solution {
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> ans = new LinkedList<>();
inorder(ans, root);
return ans;
}

private void inorder (List<Integer> ans, TreeNode cur) {
// recursion exitrance condition
if ( cur == null) {
return;
}

// inorder
inorder(ans, cur.left);
ans.add(cur.val);
inorder(ans, cur.right);
}
}

// post-order
class Solution {
public List<Integer> postorderTraversal(TreeNode root) {
List<Integer> ans = new LinkedList<>();
postorder(ans, root);
return ans;
}

private void postorder(List<Integer> ans, TreeNode cur) {

// recursion exitrance condition
if (cur == null) {
return;
}

// post-order
postorder(ans, cur.left);
postorder(ans, cur.right);
ans.add(cur.val);
}
}

除了使用递归方法,我们还可以使用一个栈结构来模拟递归行为:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
// pre-order
class Solution {
public List<Integer> preorderTraversal(TreeNode root) {
List<Integer> ans = new LinkedList<>();

if (root == null) {
return ans;
}

Stack<TreeNode> stack = new Stack<>();
TreeNode node;
stack.push(root);

while (!stack.isEmpty()) {
node = stack.pop();
ans.add(node.val);

if (node.right != null) {
stack.push(node.right);
}

if (node.left != null) {
stack.push(node.left);
}


}

return ans;

}
}

// in-order
class Solution {
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> ans = new LinkedList<>();

if (root == null) {
return ans;
}

Stack<TreeNode> visited = new Stack<>();
TreeNode node = root;
while (node != null || !visited.isEmpty()) {

// go along the left side until touching the leftmost leaf node
if (node != null) {
visited.push(node);
node = node.left;
}else {

// pop the last element we visited, records its value and
// point to its right node
node = visited.pop();
ans.add(node.val);
node = node.right;
}

}
return ans;
}

}

// post-order
class Solution {
public List<Integer> postorderTraversal(TreeNode root) {
List<Integer> ans = new LinkedList<>();

if (root == null) {
return ans;
}

Stack<TreeNode> stack = new Stack<>();
TreeNode node = root;

// post order left right root, reverse to root, right, left in stack
// see what? root, right, left, similar to pre-order but get child nodes swapped
// thus, it is easy to think how about let's slightly change the code for pre-order
stack.push(node);
while (!stack.isEmpty()) {
ans.add(node.val);

if (node.left != null) {
stack.push(node.left);
}

if (node.right != null) {
stack.push(node.right);
}

node = stack.pop();
}

// now we get the values but in root right left, we need to reverse the ans list
for (int i = 0, j = ans.size() - 1, temp = 0; i < j; i++, j--) {
temp = ans.get(i);
ans.set(i, ans.get(j));
ans.set(j, temp);
}

return ans;
}
}